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Static Estimation of the Meteorological Visibility Distance in
Night Fog with Imagery
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SUMMARY In this paper, we propose a new way to estimate
fog extinction at night. We also propose a method for the classi�-
cation of fog depending on the forward scattering. We show that
a characterization of fog based on the atmospheric extinction pa-
rameter only is not su�cient, speci�cally in the perspective of
adaptative lighting for road safety. This method has been val-
idated on synthetic images generated with a semi Monte-Carlo
ray tracing software dedicated to fog simulation. Validation pro-
cess has been conducted with experiments in a fog chamber, we
present the results and discuss the method, its bene�ts and its
limits.
key words: fog, granulometry, camera, forward scattering,
adaptative lighting

1. Introduction

The development of Advanced Driver Assistance Sys-
tems (ADAS) is a very active �eld of research in the
automotive industry. Some widespread systems rely on
proprioceptive sensors and are installed on today's cars
like the Anti Blocking System (ABS) or the Electronic
Stability Program (ESP). Others rely on exteroceptive
sensors (LIDAR, RADAR, camera) such as Lane De-
parture Warning (LDW), Forward Collision Warning
(FCW), Tra�c Sign Recognition (TSR) or Adaptive
Forward Lighting (AFL) systems, e.g. [1, 2]. Among
the sensors, camera is one of the most promising since
it can be low cost one and suits di�erent applications
[3]. However, the reliability of camera-based systems is
still not 100% guaranteed, which hinders their massive
deployment in today's cars. In particular, degraded
weather conditions, such as rain or fog, are major con-
cerns [4]. First, the reliability of the systems is reduced
because some visual aspects of the highway scenes are
changed, so that the computer vision methods designed
for clear weather conditions may not be relevant any-
more. Second, adverse weather conditions directly af-
fect the safety of the driver, since it can limit the visi-
bility range of the driver or lower the friction. Detect-
ing, characterizing and mitigating the e�ects of adverse
weather conditions using the signal of a single camera
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is thus a challenge for future camera-based ADAS.
Among the perturbations, rain is the one with

higher occurrence in tempered climate. It has a great
impact on friction [5] but also on visibility [6]. Recently,
di�erent camera-based systems have been proposed to
detect rain on the windshield [7�9] as well as wet pave-
ment [10, 11]. Fog is known for its e�ects on visibility.
Dense fog is an important road safety issue, given the
major importance of visual informations in the driving
task [12].

Di�erent methods were proposed to detect and
characterize visibility in daytime fog by in-vehicle cam-
era. [13] estimates the visibility distance by measuring
the contrast attenuation of lane markings at di�erent
distances in front of the vehicle. A monocular method
using Koschmieder's model allows estimation of the me-
teorological visibility distance [14]. A method based
on stereo-vision computes the distance to the farthest
point on the road surface with a contrast greater than
5% which gives the visibility distance [15]. This method
was later adapted to monocular vision [16]. Some meth-
ods restore the images grabbed in daytime fog [17, 18]
and might be used in ADAS. Finally, it is proposed
in [19] to use the presence of daytime fog to segment
the free space area ahead of the vehicle.

Previous works on nighttime fog detection and
characterization with imagery are few. Using static
imaging techniques, [20] uses the attenuation of dis-
tant light sources to reconstruct the 3D structure of the
scene. After extracting the halo of distant sources, [21]
and [22] look for the parameters of an atmospheric point
spread function that �ts the evolution of intensity of the
halo. These methods exploit the single/multiple scat-
tering properties of fog, and are relevant for haze and
light fog. Kwon [23] proposed a static device made of
a Near-IR camera, a retrore�ective target placed a few
meters ahead of the camera and illuminated by a Near-
IR light source. This apparatus should be installed near
the road on sites with a high potential of occurrence of
fog events.

Though fog and its e�ects on energy transmission
and visual performance have been studied for a long
time, the authors do not agree on the proper models
to use in order to characterize it. The standards of
meteorological measurements for fog at night rely on
the estimation of the distance at which a collimated
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beam would be attenuated by 95%, then computing
the equivalent attenuation for that slab of atmosphere
with Beer-Lambert model [24]. This suggests that the
Beer-Lambert model and speci�cally the extinction co-
e�cient is su�cient to describe the e�ects of fog on
light propagation, which is questionable.

In this article, we propose a computer vision
method that characterizes dense fogs in nighttime situ-
ations (meteorological visibility < 500m) that may im-
pact visual performances while driving. In this aim,
we propose to use the presence of known light sources
in the environment to compute the meteorological vis-
ibility distance as well as a new descriptor denoted FS
related to the fog granulometry. The method is assessed
thanks to realistic photometrical simulations and vali-
dated experimentally by measurements in a fog cham-
ber.

In section 2, we present a model light propagation
in fog at night and a simulation software of foggy scenes.
In section 3, we �rst propose a simpli�ed method al-
lowing to compute k, the extinction factor of Beer-
Lambert's law, from a foggy image. Then we discuss
the limits of this model for light propagation in fog
and show the need for a measure related to the forward
scattering of the particles in fog. In section 4 we ex-
pose the validation process we used on simulated and
real measurements in fog. In section 5 we show the
needs in recent industrial applications and discuss the
feasibility considering the state of the art.

2. Fog Model and Simulation

2.1 Light Propagation in Fog

Eq. (1) relates the e�ects of nighttime fog on photom-
etry from the linear system theory point of view [25].
The �rst part corresponds to Beer-Lambert's attenua-
tion law for collimated beams, the second part expresses
the frequential e�ect of the scattering of light by the
particles in the medium.

Ls(d) = Ls(0)e
−kd + Ls(0)∗F−1{Mkd−e−kd}(1)

where Ls(0) is the luminance of the object, k is the
extinction coe�cient, d is the observation distance and
M characterizes the point spread function of fog. Using
the analogy between a slab of fog and an optical �lter,
the Modulation Transfer Function (MTF) M(k,d) of a
homogeneous slab of fog of width d and extinction co-
e�cient k can be derived from the MTF M of a slab of
unit optical depth, called the frequency contrast oper-
ator (FCO) [26].

M(k, d) = Mkd (2)

In daytime fog a convenient and currently used unit is
the meteorological visibility distance Vmet, it is related
to the extinction coe�cient k of Beer-Lambert that is

also present in Eq. (1). The Vmet is de�ned as :

Vmet = 3/k (3)

Using the Vmet for night fog characterization means us-
ing only the �rst part of Eq.(1), thus neglecting the
scattering e�ect of light. We show in section 3.1 that
for light sources at night, this model is somehow limited
in case of fogs composed of big droplets because the for-
ward scattering of the particles becomes non-negligible.
Forward scattering has a major impact on the appear-
ance of light sources at night concerning the intensity
perceived and the halo e�ect.

2.2 Fog Simulation by Semi Monte-Carlo Ray Tracing

PROF (Photometrical Rendering Of Fog), is a semi-
Monte Carlo ray-tracing software designed for fog sim-
ulation [27]. We can produce luminance maps of an
environment with several light sources in an homoge-
neous fog. Using PROF, we tried di�erent con�gura-
tions considering the number of light sources and their
locations for Vmet ≤ 500m. Depending on the number
of rays used, there may be noise with variance propor-
tional to the square root of the number of rays. We
actually used 108 rays, that is a common compromise
between simulation time and noise.

For the interactions of light with fog droplets, we
give tabulated phase functions and we need to set the
extinction factor k of Beer-Lambert model. We have
used two di�erent sets of phase functions. One set uses
Shettle-Fenn [28] drop size distributions (see Fig. 1).
Those are denoted G1 to G4 (G1 being the advection
fog type and G4 the radiation fog type). The other
set uses real measurements of droplet size distributions
made in the fog chamber presented in Sec. 4.2. Those
are denoted ADV and RAD, ADV being composed of
bigger particles and RAD composed of smaller droplets.
The equivalent phase functions of all those distributions
were computed according to Mie theory.

We are planing on using a potential site next to
our facilities in order to experiment our methods in
real fog. So our simulations should be compliant with
the dimensions of this real site and its characteristics.
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Fig. 2 Potential site and simulation of light sources at night

We simulated a very simple scene compatible and close
to our site consisting of a road of asphalt, light sources
and fog. We have used a dark pavement (10% re�exion
and Lambertian model) which is consistent with usual
road surfaces.

The luminances measured on our luminance maps
for a light source at 35m are shown on Fig. 3 for Vmet

between 66m and 200m.

3. Night Fog Characterization

Our goal is to develop a camera based method able to
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Fig. 3 Luminances of a source at 35m in four di�erent fogs
depending on the Vmet

characterize fog. We show that the Vmet (the extinction
coe�cient k) is biased depending on fog granulometry
and Vmet. We show that forward scattering, which is
related to granulometry, has an important e�ect on the
aspect of light sources and on the intensities perceived.
So we develop a method that estimates k but also gives
information on the forward scattering of the particles.

3.1 Classical Approach with two Light Sources

Neglecting the second part of Eq. (1), leads to the Beer-
Lambert extinction model

Ls(d) = Ls(0)e
−kd (4)

Beer-Lambert describes the �rst order of interaction
between light and the atmosphere. But this is a lim-
ited model for two reasons, �rst of which, droplets are
not absorbent, they scatter light. Since the albedo of
water is nearly one and the size of some droplets can
exceed ten times the wavelength of visible light, most
energy is scattered forward when light "hits" droplets.
Another bias between the two models corresponds to
the multiple scattering, but it is usually assumed to be
negligible.

From Eq. (4), using two light sources Li and Lj of
exitances Li(0) and Lj(0) at di�erent distances di and
dj , we can estimate k with Eq. (4) :

kij =
ln
(

LiLj(0)
LjLi(0)

)

dj − di
, Li(0) = Lj(0) ⇒ kij =

ln (Li/Lj)

dj − di
(5)

For example, with a pair of light sources at 80m and
200m, we see in Fig. 4 di�erent estimations of Vmet

depending on the nature of fog.
For radiation fog like G4 (small particles,

mode ≤ 2µm), the forward scattering is not too strong
and extinction law is still valid for Vmet ≥ 100m. In
our example, this error on the estimation of k is less
than 10% with a peak at 50% for the highest density
of fog (the relative error on k equals the relative er-
ror on Vmet). For advection fog like G1(big droplets,
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mode ≥ 3µm or superior, more forward scattering) the
error on the estimation of k is greater than that of ra-
diation fog and also depends on k, it strongly increases
for Vmet ≤ 100m. The error increases beyond 100% for
small values of Vmet. This shows that the estimation
of k is biased depending on the position of the sources
and this bias comes from the scattering of light.

3.2 Using n Sources

The range of fogs situations that can be studied de-
pends on the placement of the light sources with the
method exposed in subsection 3.1. We may overcome
this problem by placing several sources on a wide range
of distance and exploiting the most suitable pair among
the possible.

3.3 Sensitivity Composition

Using three light sources, we compute three di�erent es-
timations of k using the three possible pairs of sources.
We propose a method to automatically extract the most
reliable estimation of k based on the notion of sensitiv-
ity. Sensitivity is a blind way to estimate the variance
of a computation, based on the partial derivatives of a
function.

Here, we want to know how reliable the estimations
are depending on the positioning and the perceived in-
tensity of the light sources. We take the sensitivity as
the L2 norm of partial derivatives [29]:

ν(kij) =

(
∂kij
∂Li

)2

+

(
∂kij
∂Lj

)2

+

(
∂kij
∂di

)2

+

(
∂k

∂dj

)2

(6)

We estimate k from the three estimations k12, k13, k23 :

k =

∑ kij

νij∑
1
νij

(7)

We can also estimate the sensitivity of Vmet with the
same principle and compose these values in the same
manner.

Using three light sources S1, S2, S3 at 35m, 80m
and 200m we see in Tab. 1 di�erent estimations of k and
the sensitivities associated to these computations. The
sensitivity is well suited to our problem, we can see that
it is lower for closer light sources (1 and 2) in the heavi-
est fog (Vmet = 33m) and lower for distant light sources
(2 and 3) when the fog is lighter (Vmet > 100m). In any
case, we know we can rely more on the information of

ADV ν
Vmet(m) ν12 ν23 ν13

33 14 464173 107805
100 517 56 459
200 8441 311 8732

Table 1 Sensitivity depending on the pair of light sources ob-
served for di�erent Vmet in advection fog
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Fig. 5 Estimation of Vmet using three light sources and sensi-
tivity composition (7)

one particular pair among the three possible pairs. It
works well for radiation fogs (see Fig. 5), but even with
sensitivity composition and three light sources, some
k values are badly estimated, particularly in advection
fog.

The sensitivity composition of the estimates of k
(or Vmet) can be used with any number of lights at
any distances. Supposing we had several light sources
at di�erent distances from 30m to 400m or farther, we
could address a large range of fog conditions.

3.4 The Forward Scattering Bias

3.4.1 Impact of the Forward Scattering

Depending on the size of the droplets, fog may have
very di�erent visual e�ects at night. The presence and
size of halo around light sources depends on the granu-
lometry of fog and the intensity perceived from a light
source may di�er from Beer-Lambert's extinction law
as we have seen on Fig. 3. This results in biased esti-
mations of the atmospheric extinction parameter and
an overestimation of the Vmet (see part 3.1).

We saw in Fig. 3 that even sensitivity composition
does not lead to accurate results in advection weather:
100% error on the estimation of Vmet in the worst case.
The luminance perceived is 60% greater in the fog com-
posed of the bigger droplets (G1) than in the fog with
smallest droplets (G4). As a consequence, Vmet is also
overestimated by 55%.

Using this estimation, we overestimate the original
intensity Li(0) of the light sources if we compute it by
reversing Eq. (4) following :

Li(0) = Li(d)e
kdi (8)

We know the intrinsic luminance (without fog) and we
compute the relative error in the estimation of the lu-
minance using Eq. (8). We show on Fig. 6 the relative
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Fig. 6 Error in the computation of intrinsic luminance

error when computing the light sources luminance de-
pending on Vmet and distance. This relative error is
independent of the intensity of the light source. Know-
ing this error and the estimated Vmetest , we can classify
the type of fog with respect to its forward scattering
properties. We computed a tabulated function of the
relative error depending on the Vmet and the granu-
lometry (see Fig. 6). The granulometric distributions
we used as references for the tabulated are those from
Shettle-Fenn presented in Sec. 2.2 denoted G1 to G4.

3.4.2 a Forward Scattering Related Measure : FS

We de�ne a measure linked to the forward scattering
parameter: FS ∈ [0; 5]. For a given Vmetest , we com-
pute the error and locate it with respect to the four ref-
erence error curves. Fogs G4 to G1 present increasing
forward scattering. Our measure FS should be increas-
ing with error, it is more important for G1 fog than for
G4 fog. FS = 0 corresponds to the theoretical case of
Beer-Lambert's extinction law. FS = 1 corresponds to
an error like for G4 fog. FS = 4 corresponds to an
error like for G1 fog, if the relative error estimation of
L0 is more important than what observed for G1, FS
is thresholded to 5. Intermediate values describe the
distance to the two nearest reference curves.

We have tested our measure of the forward scat-
tering of the particles with noisy simulations generated
with PROF. We show the results of FS computation
with real advection and radiation phase functions ADV
and RAD in Tab. 2. The measure FS should be seen as
a classi�cation measure that links the forward scatter-
ing of a fog to one of the reference fogs G1 to G4. Here,
for a radiation type granulometric distribution RAD,
FS = 2.1, meaning it has forward scattering as G3 (see

Phase Vmetref Vmetest Rel. Err. FS

RAD 100 100.6 0.117 2.1
ADV 100 102 .3 0.274 3.33

Table 2 Result of our forward scattering estimation with ref-
erence fogs G1 to G4

Fig. 7 Experimental Setting

Fig. 6) and is a moderate advection fog according to
Shettle-Fenn (see Fig. 1). The radiation type granulo-
metric distribution RAD has FS = 3.3, meaning it is
between G2 and G1 and is more the moderate advection
fog than the heavy advection fog type.

4. Validation with Real Fog Experiments

4.1 Arti�cial Fog Chamber

After validating the method on simulated luminance
maps, we set up an experiment in the fog chamber of
Clermont-Ferrand [30]. It is 30 meters long, 5.5 m wide
and 2.7 m high and consists of a small-scale climatic
chamber in which we can sprinkle water droplets until
the air is saturated with fog. The evolution of den-
sity of the fog is permanently monitored by a TR30
transmissometers from Degreane Horizon with a base of
28m. Granulometric distributions were measured with
a Palas sensor. Fogs with di�erent droplet size distri-
butions can be produced. One fog is produced with tap
water, containing minerals, which gives granulometric
distributions with a mode around 1µm and droplets
sizes distributed between 0.8µm and 8µm, which is
characteristic of radiation fog. The other granulomet-
ric distribution is obtained with the use of demineral-
ized water, containing less condensation nuclei. This
distribution is composed of larger droplets distributed
between 0.4µm and 20µm and has a mean diameter
being around 5µm which is characteristic of advection
fog though it seems natural advection fogs may contain
even bigger droplets [31,32].

4.2 Experimentation

We put light sources at 15m, 18m, 23m and 28m (see
Fig. 9). The light sources were positioned so as to
not interact with each other. The experiments consist
in taking pictures with a video-luminancemeter LMK
Color 98-4 with a 12 bit CCD sensor while the fog dis-
sipates. We recorded simultaneously the Vmet values
given by the TR30. As suspected, intensities perceived
in the direction of the light source can be very high
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Fig. 8 Evolution of granulometric distributions during the ex-
periments with advection (up) and radiation (down) fog

when there is no fog. Even with the lowest integra-
tion time, the video-luminancemeter was saturated. We
used a neutral density �lter in order to estimate the lu-
minance of those light sources in clear weather.

During the experiments, the fog density was raised
to its maximum by saturating the chamber with
droplets. Then we let the fog dissipate naturally. It
dissipates by two phenomenons, heavier droplets fall
to the ground and other water droplets aggregate and
eventually fall. Because of the nature of the dissipa-
tion, fog is strati�ed, so all the optical instruments and
light sources had to be placed at the same height.

4.3 Results

The simulated images generated with PROF showed
greater luminances in advection fog than in radiation
fog for equivalent values of Vmet. As shown on Fig. 10,
real luminances can be ten times greater in advection
fog than in radiation fog. This e�ect is stronger than

Fig. 9 Positioning of the light sources in the fog chamber

Radiation Vmet

Vmetref 8 9 12 16 20 25 34
Vmetest 6.3 6.2 8.5 9.5 12.5 15.6 37.5

Advection Vmet

Vmetref 11 15.5 22 28 33 34 43
Vmetest 8.2 11.1 12.8 14.1 17.1 17.5 24.7
Table 3 Estimation of Vmet with di�erent natures of fog

showed in the simulation. This could come from the
fact that we are currently dealing with very dense fogs.
The relative luminance of a light in advection fog is 4
to 10 times that of the same light source in radiation
fog for Vmet comprised between 15m and 45m.

We now want to apply the method developed on
synthetic luminance maps. Using pairs of light sources
in order to estimate k (see Eq. (5)) and composing the
estimations using Eq. (6) and Eq. (7). The results are
shown in Tab. 3. We can see in Tab. 3 that the estima-
tion of Vmet is better achieved in radiation fog than in
advection fog. That was also the case with simulated
images. The sensitivity composition method was ap-
plied with the six possible pairs of light sources. The
mean error is about 50% in radiation fog, the mean er-
ror is about 72% in advection fog. It is therefore logical
that computation of the intrinsic luminance of sources
using the method exposed in Sec. 3.4 leads to more er-
ror for advection fogs than for radiation fogs. We can
see that the relative error in the estimation of L0 of
the sources is less than 100% for radiation fogs. It can
be over 1000% for advection fogs. The computation of
the measure FS using our tabulated errors as shown
in Sec. 3.4 is not satisfactory. All measures give more
error than the G1 fog in simulation, leading to FS = 5.
This could come from the fact that the experiments
were conducted in very dense fogs and that the tabu-
lated function were computed with sources at di�erent
distances in simulation and in the fog chamber. The
tabulated functions of relative error on the computa-
tion of L0 we got from simulation are not suited for
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real fogs. But the computation of a relative error on
the estimation of L0 seems to be relevant to di�eren-
tiate fogs with much forward scattering and fogs with
less forward scattering.

5. Applications

It is a fact that drivers su�er visual impairment in fog
at night, speci�cally in dense fog environments or when
visual cues are few. It is believed that drivers may
change their behavior in fog, they may use shorter fol-
lowing distances in foggy conditions as compared with
clear weather [33].

A �rst proposition in order to improve the safety
in those situations would be to use two rear fog lights
on cars, a minimum width separating back lights and
it is also suggested that lowering the height of lights
could lead to decreased distance estimations [34,35].

New proposals are emerging since recent changes
in law enforcement in Europe. Some of those changes
concern the intensity of the front and rear lights of the
car [36]. The future of adaptative lighting is to be able
to cope with more complicated situations than day or
night di�erentiation, tunnel outing or some highly con-
trasted scenes that could lower the visual performance
of lights. Technical propositions consists in adapting
the intensity and the lighted area of lights.

Solutions proposed nowadays concern adapting the
intensity of rear lights to reduced conditions of visibil-
ity in order to improve perception by keeping the in-
tensity perceived constant at some distance [37]. They
propose to use the meteorological visibility distance,
derived of the parameter k of Beer-Lambert model in
order to compensate for the attenuation of light. In-
car experiments exist, they use lidar technology to esti-
mate k, thus the Vmet [38,39]. We showed in 3 that an
observer could perceive very di�erent intensities from
light sources at the same distance with the same Vmet

depending on the granulometry of the droplets com-
posing the fog. This leads to the conclusion that using
only Beer-Lambert model of light propagation in adap-

Fig. 12 Cars in radiation (up) and advection (down) fog with
Vmet of 100m

tative lighting could lead to wrong adaptation of the
intensities of the lights.

We showed the needs to take into account gran-
ulometry in active lighting systems working at night.
Cameras or lidars estimation of the density of fog at
night should give a granulometry related parameter in
complement to Vmet that is not su�cient to describe
the visual e�ect of fog on perception (see Fig. 12). We
believe that recent developments in cameras (high def-
inition, but more importantly for our applications high
dynamic), could lead to develop such a method.

6. Conclusion and Outlook

We have presented a new way of characterizing meteo-
rological visibility distance with a camera that needs at
least 1 image and three light sources of known distance
and intensity. We showed that the method could be
extended to any number of sources and that it could
increase the range and con�dence on the estimation of
the extinction coe�cient k. This method improves pre-
vious results, particularly in the case of dense fogs. But
still, a bias exists that is related to the scattering of light
by droplets. We showed the needs for a more complete
model than classic Beer-Lambert's extinction law for
light propagation in fog at night. We have proposed
a measure related to the forward scattering of the fog,
an aspect of light propagation in fog at night that is
linked to droplets granulometry and that strongly im-
pacts on the appearance of light sources. We estimate
our measure FS in reference to a tabulated function
computed from simulation. The next step is to gener-
alize this function with a functional description instead
of a tabulated one and make reference to real obser-
vations through a calibration process. We showed that
forward scattering should not be neglected, particularly
with regard to recent evolutions in road safety trans-
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portation systems such as adaptative lighting. We also
plan on testing our method on our site with real light
sources and our onboard 14 bit CCD camera.
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